Evaluation of whether to use ACSS vs. TS Conductor for the ampacity increase of a transmission line resulted in a favorable decision to use TS Conductor

Design Case Study

•	Pr	oj	e	ct	N	al	m	e:

Heritage – Eldora 230kV

Project Scope:

 Rebuild / reconductor approximately 5 miles of the existing Heritage-Eldora 230kV line from 954 ACSR/AW (1495 Amps) to 3000 Amps

In-Service Date:

Q2 2024

Findings:

 ~\$2.5 MM cost savings in structure savings alone (shorter and smaller poles)

	1926 ACSS	TS Williamson		
# of Structures	39	39		
Typically Structure Size	140', 45 kip (2-piece)	120', 32 kip (single piece)		
Total Structure Cost	\$3,961,659	\$945,984		
Total Conductor Cost (85,000')	\$467,500	\$963,050		
Total Ampacity of Conductor (amps)	3,000	3,198		
Total Cost for Structures & Wires	\$4,429,159	\$1,909,034		
Savings		\$2,520,125		

The use of TS's composite core conductor results in cost savings of \$2.5MM compared to traditional ACSS conductor