TS Dixie M3 8 (0.814) 536

Governing Units: Metric

Mechanical Specifications	Metric		Imperial	
Fully Annealed Al Cross-sectional Area*	271.55	mm ²	535.90	kcmil
Encapsulated Aluminum Cross-Sectional Area	86.58	mm ²	0.13420	in ²
Diameter of Composite Core (Exclude Encapsulation)	8.0	mm	0.31500	in
Cross-sectional Area of Core (Exclude Encapsulation)	50.30	mm ²	0.07791	in ²
Overall Diameter of Conductor	20.676	mm	0.814	in
Cross-sectional Area of the Conductor (Exclude Covering)	321.80	mm ²	0.49882	in ²
Ultimate Tensile Strength of Conductor 1) ,2)	155.11	kN	34.87	kip
Rated Strength of Core - 399 ksi (2750 MPa)	138.21	kN	31.07	kip
Core Mass per unit length (Exclude Encapsulation)	87.00	kg/km	58.47	lb/kft
Conductor Mass per unit length	829.47	kg/km	557.47	lb/kft
Fully Annealed AlMass per unit length (Include Encapsulation)**	742.47	kg/km	499.00	lb/kft
Maximum Emergency Temperature at Surface 3)	200	°C	392	°F
Coefficient of Linear Expansion Above Thermal Kneepoint (core)	0.500	x10 ⁻⁶ /°C	0.278	x10 ⁻⁶ /°F
Coefficient of Linear Expansion Below Thermal Kneepoint (conductor)	15.623	x10 ⁻⁶ /°C	8.679	x10 ⁻⁶ /°F
Final Modulus of Elasticity Above Thermal Kneepoint (based on core area)	150.0	GPa	21.8	Msi
Final Modulus of Elasticity Below Thermal Kneepoint (based on conductor area)	71.2	GPa	10.3	Msi
Aluminum Heat Capacity	696.1	Watt-s/m-°C	117.9	Watt-s/ft-°F
Core Heat Capacity	74.3	Watt-s/m-°C	12.6	Watt-s/ft-°F
Encapsulation Thickness	2.60	mm	0.10236	in
Stranding Ratio	1.0200			
Covered Thickness	0.000	mm	0.000	in
Electrical Specifications	Me	Metric Imperial		perial
DC Resistance at 20°C (Fully Annealed Al 63% IACS)	0.1021	ohm/km	0.1644	ohm/mile
DC Resistance at 25°C	0.1042	ohm/km	0.1677	ohm/mile
DC Resistance at 75°C	0.1251	ohm/km	0.2013	ohm/mile
Temperature Coefficient of Resistance at 20°C	0.00408	1/°C	0.00227	1/°F
Frequency	60	Hz	60	Hz
AC Resistance at 25°C	0.1048	ohm/km	0.1687	ohm/mile
AC Resistance at 75°C	0.1256	ohm/km	0.2021	ohm/mile
AC Resistance at 180°C	0.1691	ohm/km	0.2722	ohm/mile
Ampacity 4)		1175	@180	°C, & A
milipaolity +)		1237	@200	°C, & A
GMR (estimated)	8.52	mm	0.0280	ft
Inductive Reactance (Xa: internal flux+external flux radius 1 ft)	0.2697	ohm/km	0.434	ohm/mile
Capacitive Reactance	0.1615	Mohm-km	0.100	Mohm-mile

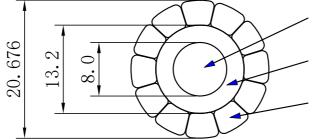
^{*}TS Dixie M3 8 (0.814) 536 conductor is produced with Fully Annealed Al aluminum. The nominal Aluminum equivaeInt area is 271.6 sq. mm (535.9 kcmil)

The information contained herein is offered in good faith. All values are nominal unless specifically indicated as maximum or minimum. The actual configuration of a given size may vary between conductor manufacturers and may result in slight variations in some of the indicated values. Data herein is to be considered confidential and proprietary to TS Conductor

contact: info@tsconductor.com ID:48026 Date Produced: 3/27/2024

^{**}TS® Conductors are required to exhibit lay lengths (ratios) that conform to established ACSR and ACSS standards.

¹⁾ Fully Annealed Al rated tensile strength based on applicable standard. Core tensile strength based on 100% of its strength.


²⁾ Strength at ambient temperature, Strength may be reduced to Rated Core Strength when temperature is above knee point

³⁾ Maximum continuous operating temperature of TS Dixie M3 8 (0.814) 536 is 180°C and a maximum emergency temperature of 200°C

^{4).} Ampacity based on: 25°C ambient temperature, 2ft/s (0.6 m/s) perpendicular wind, 0.5 Emis 0.5 Absorb.60 Hz, sea level (0) elevation, 30°N line Azimuth, noon on June 10th (96W/sq.ft, 1033W/sq.m), clear atmosphere

Units: mm

TS Conductor Cross sectional drawing

Carbon fiber composite core:

Nominal diameter=8.0mm

Aluminium Encapsulation:

Thickness = 2.6mm Nominal area=86.58mm²

Trapezoidal shaped annealed aluminium wires:

Numbers=12 Nominal area=15.42 mm²

TS Conductor Corp.

TS Dixie M3 8 (0.814) 536-ID:48026				
Design			Date	
Check			Date	
Ratify			Date	